Fluorescent Nanoconjugate Derivatives with Enhanced Photostability for Single Molecule Imaging.
نویسندگان
چکیده
Fluorescence-based imaging techniques critically rely on bright and photostable probes for precise detection of biological molecules. Recently, a new class of multichromophoric probes based on fluorescent dendrimer nanoconjugates (FDNs) was developed for single molecule fluorescence microscopy (SMFM). FDNs are generated by covalent conjugation of multiple fluorescent dyes onto macromolecular polymeric scaffolds and show marked increases in brightness and long-term photostability relative to their single organic dye constituents. Multichromophoric probes, however, are generally known to suffer from transient fluorescence emission intensities and long excursions into dark states. To overcome these issues, photostabilizers can be added to bulk solution, though some small molecule additives may exhibit poor aqueous solubility or biological toxicity. In this work, we develop enhanced FDN derivatives by covalently linking a redox-active photostabilizer (Trolox) directly onto FDN molecular scaffolds. In one approach, multiple organic dyes (Cy5) and Trolox molecules are randomly distributed on dendritic scaffolds in tunable stoichiometric amounts, and in a second approach, Cy5 dyes are covalently linked to Trolox in a precise 1:1 stoichiometry followed by covalent attachment of Cy5-Trolox conjugates onto dendrimers. In all cases, FDN-Trolox conjugates show increases in photostability, brightness, and reduced fluctuations in transient fluorescent intensity relative to FDN probes. Bulk and single molecule photophysical data for FDN probes are compared to single self-healing dye systems such as Cy5-Trolox, and as a proof-of-principle demonstration, we use FDN-Trolox derivatives for bulk immunofluorescence imaging. Overall, our work suggests that self-healed multichromophoric systems such as FDN-Trolox probes present a useful strategy for increasing fluorescent probe photostability.
منابع مشابه
Dendrimer probes for enhanced photostability and localization in fluorescence imaging.
Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluoresce...
متن کاملSuper-Resolution Imaging Conditions for enhanced Yellow Fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers
Photostability is one of the crucial properties of a fluorophore which strongly influences the quality of single molecule-based super-resolution imaging. Enhanced yellow fluorescent protein (eYFP) is one of the most widely used versions of fluorescent proteins in modern cell biology exhibiting fast intrinsic blinking and reversible photoactivation by UV light. Here, we developed an assay for st...
متن کاملMicrofluidics-based selection of red-fluorescent proteins with decreased rates of photobleaching.
Fluorescent proteins offer exceptional labeling specificity in living cells and organisms. Unfortunately, their photophysical properties remain far from ideal for long-term imaging of low-abundance cellular constituents, in large part because of their poor photostability. Despite widespread engineering efforts, improving the photostability of fluorescent proteins remains challenging due to lack...
متن کاملFluorophores for live cell imaging of AGT fusion proteins across the visible spectrum.
O6-alkylguanine-DNA alkyltransferase (AGT) fusion proteins can be specifically and covalently labeled with fluorescent O6-benzylguanine (O6-BG) derivatives for multicolor live cell imaging approaches. Here, we characterize several new BG fluorophores suitable for in vivo AGT labeling that display fluorescence emission maxima covering the visible spectrum from 472 to 673 nm, thereby extending th...
متن کاملEnhanced photostability of an anthracene-based dye due to supramolecular encapsulation: a new type of photostable fluorophore for single-molecule study.
For single-molecule fluorescence studies, highly photostable fluorophores are absolutely imperative, because photo-induced degradation (i.e., photobleaching) limits the observation time of individual molecules. Herein, the photophysics and photostability of a highly fluorescent 9,10-bis(phenylethynyl)anthracene derivative (G) and its self-assembled boronic ester encapsulation complex (G@Cap) em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 87 21 شماره
صفحات -
تاریخ انتشار 2015